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In addition toC,-symmetrical ligandsand their nonsymmetrical
congeners,* we have recently introduced a new class of
aminophosphines, e.g., the title compodn@AP),®> which can
be regarded as a nitrogen analogue of HayaSM®P (2). The
MAP ligands exhibited asymmetric induction in Pd(0)-catalyzed
allylic substitutiorlf and a dramatic acceleration of the Hartwig
Buchwald amination of aryl halide¥’ The latter effect was
simultaneously reported by Buchwald for theéBi),P counterpart
of 1 and its biphenyl analoguésThese ligands were assumed to
coordinate Pd via P,N-chelatioB) 2 Herein, we present evidence
that 1 actually acts as a P,C-ligand with an unusug-€d
bonding mode5 (Scheme 1) and demonstrate a substantial
acceleration of Suzuki coupling in its presence.
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Single-crystal X-ray crystallography of the Rdtomplex,
prepared from (PhCNPdCL and §)-(+)-1, excluded the P,N-
chelate3 structure and revealed its B;@igating alternative §-
(+)-5 (Figure 1)? whose formation apparently reflects the ligand’s
enamine-like charact¥r!® combined with the known tendency
of Pd to form five-membered palladacycles in preference to other
ring-sizes* In solution, an 85:10:5 mixture of three species has
been detected bH NMR spectroscopy. In the most abundant
complex, the singlet of M@l was shifted to 3.11 ppm (from 2.23
ppm inl). The signal of C(1) in th&’C NMR spectrum appeared
at 72.64 ppm, whereas C(2) was shifted to 173.35 ppm, which is
compatible with the P,C-chelated struct&® The less abundant
complex exhibited two doublets for the M at 2.56 and 4.06
ppm ¢Jyp = 5.0 and 4.9 Hz, respectively), which is indicative
of P,N-chelatiorB. The least populated species was characterized
only by 3P NMR spectroscopy, which demonstrated -aFel
coordination, suggesting the P-monocoordinated complex
Exchange cross-peaks, observed in the NOESY spectrum between
the signals o6 and 3, indicate a dynamic equilibration.

(9) Crystal data for $-(+)-5: orthorhombic, red crystals, space group
P2,2,2;, a=10.163(2) Ab = 14.443(3) Ac = 19.680(3) AV = 2888.7(9)
A3 Z=4,dca.= 1.515 g cm?3, = 0.908 mnT?, Re = 0.0314. The valence
angle P&-C(1)—C(1) 112.46 and the distances C(&(2) and C(1)-C(9)
1.475 and 1.502 A, respectively, are close td ggometry at C(1). Other
parameters: PPd—C(1)= 85.02, Pd—C(1)—C(2)= 103.63, Pd—P = 2.195
A, Pd—C(1) = 2.187 A, C(2»-N = 1.319 A. The estimated error in-€C
bond lengths is 0.008 A.

(10) Similar G-bonding of Pd(Il) has been observed for (biphen)Pd-
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Figure 1. ORTEP diagrams fob—7; H and TfO™ are omitted.

Crystallographic analysis of thg-allyl complex, prepared from
(9-(+)-1 and [(MeCN)Pd(;%-CsHs)]* TfO™ (Figure 1), again
revealed the unusual P,€helated structure)-6'¢ that exists
as a~3:2 mixture of two diastereoisomers resulting from the
positioning of the allyl unit. NMR spectroscopy confirmed the
presence of the two latter species in solution inh1:1 ratio,
whose interconversion is slower than the NMR time scale at
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PhB(OH) occurred in<20 h at room temperatuiein the
presence of (AcQPd (3 mol %),1 (4.5 mol %), and either CSF
or CsCO%* (3 equiv).

The enhanced reactivity of the Pd/MAP complexes may
originate from the presence of the low-abundant P-monocoordi-
nated species (analogousfipin line with Buchwald's suggestion
(made without spectroscopic evidenéayhile the P,C-complex
would serve as an inactive depot. On the other hand, the P,C-
chelate (analogous t6) can also be conjectured to play a role,
and the reactivity of Pd/ could be understood in terms of
accelerated oxidative addition (the rate-limiting $8pwing to
the electron richness of the “palladate” species. The lack of
accelerating effect of2”2! (which tends to avoid bidentate
coordination in the presence of ClI ligdfidseems to further
support the importance of P,C-coordinatiorilpht least in some
parts of the catalytic cycl&. Furthermore, the reaction oftf-
[1-°H]-cyclopent-2-enyl pivalate with NaCH(G®le), and §)-
(+)-6 (5 mol %) was found to proceed with 88% regiochemical
retention and nearly identical results were observed 24T his
powerful memory effect proved to be attenuated by & mol
%), which can be understood in terms of accelerated collapse of
an ion-paireéf intermediate §°-(c-CsH;)-PdL]" [O.C-tBu]~ (L
=1 or 2 in P,C-mode) and chloride-catalyzed diastereocisomer
equilibration?®2° Kinetic resolution kgr/ks = 4—7)%° and high

ambient temperature; C(1) is characterized by signals at 92.9 andcatalyst stability® further support bidentate coordination of MAP

94.3 ppm in thé3C NMR spectrum of the mixture, whereas C(2)
appears at 155.4 ppihie

These results seem to be in sharp contrast to Hayashi’'s X-ray
structure of (MOP)Pd(prenyl)Cl, where MOP is monocoordinated
to Pd by P° However, inspection of this structure revealed that
Pd is, in fact, positioned right above the C{IJ(2) bond with
Pd-C(1) and Pe-C(2) distances being 3.38 and 3.50 A,
respectively. Hence, on creation of a vacant coordination site (e.g.,
by loss of Cf), minimal distortion would permit bonding in a
manner analogous t6. Indeed, we have now found this to be
the case for [(MOP)Pgf-CsHs)] ™ TfO™ (7), in which Pd-C(1)
and Pd-C(2) distances of 2.34 and 2.47 A were observed by
single crystal X-ray analysis, clearly demonstratiffgcoordina-
tion.20

While 2 proved to have relatively weak effect on the Hartwig
Buchwald aminatiori? we have observed a substantial accelera-
tion, e.g., for the reaction of 4-Bu)CsH,Br with n-Bu,NH in
the presence of PH{3 mol %, 50°C, 12 hY-??to produce 4+
Bu)CsH4N(n-Bu),. Even more dramatic acceleration was attained
for Suzuki coupling?®24thus, phenylation of €1-CgH4,CHO with

(16) Crystal data fOI‘%—(Jr)-GZ monoclinic, dark-yellow crystals, space
groupP2;, a=8.7103(9) Ab = 16.688(2) Ac = 11.829(2) A, = 100.198-
(10, V= 1692.2(4) B, Z = 2, deac = 1.527 g cm®, u = 0.713 mn1%, Re
= 0.0282. Characteristic parameters—d = 2.268 A, Pd-C(1) = 2.265
A, C(1)-C(2)=1.437 A, C(1)-C(9) = 1.480 A, C(2)-N = 1.345 A; Pd-
C(1)-C(1) = 110.49, Pd—C(1)—C(2) = 93.46, P-Pd—C(1)= 84.2F. The
estimated error in €C bond lengths is 0.006 A.

(17) The C(1) signals were broadened; the assignment was confirmed by

long-range CH correlation with 3-H and 8-H.
(18) (a) When applied to the reaction of PREBHCH(OAC)PhS one of

and MOP, since monodentate ligation would be expected to be
less rigid and unlikely to effectively discriminate enantiomers.

In conclusion we have structurally characterized the unusual
Pd(Il) complexes—7, which proved to be P,C-chelates (both in
the solid state and in solution). Our experiments have demon-
strated that thé>,C-ligation must be considered as a potential
binding mode in reactions ilving MAP and MOPgven though
some parts of the active cycle may involve other modes of
ligation. Pdl complexes can be viewed as the first examples of
chiral analogues of the recently reported PoBelates?
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